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Introduction

e C(Circadian rhythm: an internal rhythm that regulates Syl
many body processes including the sleep-wake cycle, 4. tobain.,

digestion and hormone release. /

o ”
i Central

e (ircadian rhythms exist across animal and plant
species
Suprachiasmatic

o . . .. nucleus
e The ability of a circadian system to entrain its

“central” and “peripheral” oscillators to the 24-hour
light-dark cycle (LD) is one of the most important
properties.

.and body

Source: .
PhotonStar . Peripheral”



Dynamics of a Hierarchical Circadian

System

Light-dark cycle
—)

Peripheral component #1
r,=0.92 1=24.3h
X, >03max X, = r,=1.29
Phase lag 7.6 hour

Master pacemaker
r,=0.92 1=24.3h
Light = r,=0.046

Intermediate component
r,=0.77
X”w>0.3max me = r,=2.53

t=23.7h

Phase lead 10 min.

o

(damped)

Phase lag 7.6 hour

eripheral component #2 )
r,=0.2
X, >025max X, = r,=1.15
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Peripheral component #3
r,=092  1=24.3h

Y. >015max ¥, = r,=3.92
Phase lag 10.4 hour

Peripheral component #4

r,=0.2

Y, >05max Y, = r=04
Phase lag 10.4 hour

(damped)

Leise and Siegelmann, 2006 JBR
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The nature of entrainment (advance vs delay) depends on how lights are shifted



Phase-locking due to periodic
forcing

® This type of problem has been extensively studied in a
variety of contexts

® Keener et al 1981, Bressloff 1992, Coombes & Owen
2003, Laing & Longtin 2003, Medvedev & Cisternas
2004 .... many more

® Circadian literature: Kronauer’s group 1990s-,
Ronnenberg’s group 2000s-, Goldbeter’s group
2000s-, Herzel’s group 2000s-, Peskin and Forger
2003, 2004...many more

® Phase-locking described either through Arnold Tongue
structure or Devil’'s Staircase (Denjoy’s Theorem for
Circle Maps)



Central Goals

® Derive an analytic/computational map-based method to
assess the entrainment process as well as the effect of
relevant parameters.

® Determine how the entrainment properties of central
and peripheral oscillators may differ in a hierarchical
circadian network.

® |dentify important mathematical structures that help
explain empirical observations. In fact, the map reveals
the existence of saddle structures that organize the
dynamics.



Main topics
e Part 1: Existing methods and some applications.
e Part 2: Entrainment map for coupled Kuramoto oscillators.

e Part 3: Entrainment map for coupled Novak-Tyson

oscillators.



Part 1

Phase reduction

e A classical method (Winfree, 2001; Brown et al, 2004) that
reduces a multi-dimensional limit cycle oscillator into a
one-dimensional phase oscillator, which often relies on
averaging.

e Many phenomena such as chemical reactions, electric
circuits, mechanical vibrations, cardiac cells can be
studied by this method.



Parameterization

e Give a phase-amplitude coordinate system near the limit
cycle.

e The parameterized space has simpler dynamics.

e |tis often applied to find invariant manifolds (Castelli et al.,
2015; Cabre, et al., 2005).

e For limit cycle, it can be applied to find the isochrones and
isostable curves (Guillamon, 2020).



Application on computing isochrones

Unforced Novak-Tyson oscillator

1 dP P
Y M —kpP—k

o dt b T01+P+2p
1 dM 1

— M

¢ dt 6(1+P4 )

e |sochrones are
the invariant set
for different
initial conditions
to have same
phase.




Circadian oscillators: Two “unforced” limit cycles

® Either in experiment or model, the oscillator can be subjected to 24 hours
of constant darkness DD or constant light LL

® |In the presence of LD-periodic forcing, the trajectory will bounce back and
forth between these two “unforced” limit cycles (Peterson, 1980).

® These oscillators will lie in different locations in phase space and
presumably have different attractive structures (e.g. isochrons)

® \We note that this attraction to either the LL or DD limit cycles is transient
so the manifolds of either limit cycle are NOT invariant for the periodically
forced flow.



Part 2

e Hierarchical system modeled as Kuramoto
oscillators

e Analysis on the entrainment map

e Numerical results



Hierarchical system modeled as Kuramoto oscillators

o _,

dt

df

d_tl = wy + kf(6)) sin(fy — 61)

f(6g) = Heaviside(sin(6y))

0,




Single oscillator case: 1-D entrainment map

db,
—_— = W

dt

do

d—tl — wy + kf(6y)sin(6y — 6;)

r— F(x,k) =x + wpmod 2w

e x is defined to be the value of 0, which is the
phase of light-dark forcing.

e p measures the return time when the
oscillator first returns to the chosen Poincare
section: f; =



1-D entrainment map

e Easy to find the stable and
unstable periodic orbits.

e [Easy to calculate the entrainment
time by iterating the map.

e Easy to see the direction of I
entrainment by cobwebbing (phase £ 3L
advance vs delay). Al

e Easy to show dependence on
parameters.

e Discontinuity moves to the 5 i : % i s ;
boundary as we increase k.



2-D entrainment map

an _,
dt

do

dtl = wy + kf(0y)sin(6y — 0;)
do ,

d_t2 = wy + aisin(6; — 05)

Put a Poincare section at 92 — Tr,and let L = (90, Yy = 91

z — Fi(x,y,k,a) ;= x + wp mod 27
y— Fy(x,y,k,a) :==y+ wp+ kI mod 27

fO 0() SlIl 90 Hl)dt




Necessary conditions on entrainment.

Fi(x,y,k,a1) — 2 =0
Fs(x,y,k,a1) —y = 0.

Reduced to
sin(6 (s1) — (1)) = & ;1“’2
sin(8o (52) — 0y (s2)) = 2 - w1)

For entrainment, we need k > Z(w — wl), o] 2 wW— ws.



Number of fixed points (schematic explanation)

W — W2

sin(61(s1) — 62(s1))

aq
2(w — wy)

sin(00(32) — 01 (82)) = . 10

e Number of fixed points depend on the
number of intersections of the line and

’“ RN
AERY

00}

the sin function.
e The number of fixed points have four
possibility: 0,1,2,4.

e Detailed proof is in the dissertation.



Numerical results of the fixed points analysis.

No entrainment: k < k., a1 < o

Different number of fixed points are
separated by the green curves.
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Nullclines of the map for different parameters values.
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Numerical results for case (a)

e Stability of fixed points: A stable;
B & C saddle; D unstable.

e Entrainment time is computed
by iterating the map on each
initial conditions.

e Manifolds visualization by
Lagrangian descriptors method.
(Lopesino et al., 2015).

e Discretized arclength plot and its
gradient plot.




Conclusions from Kuramoto model

e Number of fixed point is bounded by four.

e Entrainment time revealed structure of stable and unstable manifolds of the
map.

e Dynamics of the map are organized by the manifolds of the two saddle points.

e Generalization to the N+1 oscillator case is discussed in the dissertation.



Part 3

e Coupled Novak-Tyson (CNT) oscillators.

e Entrainment map. (Liao, Diekman and Bose, 2020
SIADS)



Existing 1-D entrainment map

Novak-Tyson model:

1 dP

6 dt =M — k¢h(P) — kpP — k f(t)P

1 dM oo I

EWZE(Q(P)—M)

g(P) = —, H(P) = —Z

1+P"’ 0.1+P+2P* e Piecewise smooth
f(t) = Heaviside(sin(;t)). periodic forcing.

e Non-autonomous.




Existing 1-D entrainment map

D o7,
Yni1 = L(Yn) = Y + p(yn) mod 24 2 /
e Yy is defined to be the phase of light-dark : 2: ‘ y
forcing. P N =T X0
e p(y) measures the return time when the 1 % 4
oscillator first returns to the chosen Poincare \ 24 g
section. 5. A
e Structure of the map is similar to the one from i% VI
the Kuramoto model. ;13
o 1
7] =
0 L

002 4 6 8 1012 14 16 18 20 22 24
xn

Diekman & Bose, 2016



The coupled Novak-Tyson model

1 dP
_—1 — M]_ — kfh(P]_) - kDPI - kLl f(t)Pl
¢1 dt
1 dM;
T elg(P1) — M;]
1 dP,
¢2 7 9 kfh( 2) kD 2
1 dM.
— 2 = €[g(P2) — My + (1 My)g(P)]
P2 di

This is a hierarchical network with oscillators at

different levels of hierarchy.

Light

Suprachiasmatic
nucleus

NT»>




Phase plane analysis

—zpu 4 DD
0.8 01 Y 2 ‘
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LL
The DD, LL and LD limit cycles <o
0
of each oscillator. v o m
4
Poincare section is selected on mgoﬁi/;‘l\ VA
the second oscillator. ¢
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Construction of the 2-D entrainment map

(mn+17yn+1) — H(wnayn) — (Hl (wn,yn)al_IQ(wnayn))

Tn+1 = 11 (xna yn) — V:clen[(l)r;4) ’ATQ(QOm (XO)) - 0n+1|

Ynt1 = 2 (Zn, Yn) = Yn + p(Tn, yn) mod 24

f(t) " N
p <$na yn)

f<t> Yn Un+1
__F= |

p(l’n, yn>




Surfaces and nullclines of the map

24

20+

—— Diagonal Line

16 “ .

> 121 ]
A

0 4 8 12 16 20 24
X

Geometrically find the fixed points of the map: use corresponding diagonal plane
to intersect the surface of I, and IL,.



Surfaces and nuliclines of the map (use top view)

24

20+

—— Diagonal Line

16} / \/

> 121 ]
A

16 20 24 0

0 4 8 12 16 20 24
X

Geometrically find the fixed points of the map: use corresponding diagonal plane
to intersect the surface of I, and IL,.



Stability and entrainment times

e The stability of the fixed points for the map
reveal the properties of the original system
under certain conditions.

e The entrainment time plot helps locating the
stable manifolds.

x y eigenvalue stability
Al10.6|10.6 (0.1609.,0.4453) sink
B 172|172 (2.0858.,0.4238) saddle
C|10.6|21.1 (2.325,0.2734) saddle
D172 3.5 [(1.539510.771.1.595-0.771) | seurce

24
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lterates and manifolds

Iterates, N=10 Manifolds
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The phase portrait with 10 iterates of each point.

The unstable and stable manifolds of the saddle points B and C are calculated by growing method
and Search Circle (SC) method. (Krauskopf, B. & Osinga, H., 1997; England, J.P., Krauskopf, B. &
Osinga, H.M., 2004.)



Different directions of entrainment
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Dynamics of a Hierarchical Circadian

System

Light-dark cycle
—)

Peripheral component #1
r,=0.92 1=24.3h
X, >03max X, = r,=1.29
Phase lag 7.6 hour

Master pacemaker
r,=0.92 1=24.3h
Light = r,=0.046

Intermediate component
r,=0.77
X”m>0.3max me = r,=2.53

t=23.7h

Phase lead 10 min.

o

(damped)

Phase lag 7.6 hour

eripheral component #2 )
r,=0.2
X, >025max X, = r,=1.15
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Peripheral component #3
r,=092  1=24.3h

Y. >015max ¥, = r,=3.92
Phase lag 10.4 hour

Peripheral component #4

r,=0.2

Y, >05max Y, = r =04
Phase lag 10.4 hour

(damped)

Leise and Siegelmann, 2006 JBR
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Our results suggest that the saddle structures exist for this model.



Conclusions

e The 2-dimensional entrainment map reveals the mathematical
structures underlying the different types of entrainment behaviors.

o The saddle points and their manifolds organize how iterates approach the
stable LD-entrained solution.

o Though not discussed, the entrainment time plots can be used to calculate
jet lag recovery (see Diekman & Bose 2018, JTB)

e The map behaves in stereotypical ways across different circadian
models making it easy to understand or predict parameter
dependencies.

e Though not discussed here, the entrainment map should still “be
applicable” in the presence of modest stochasticity and/or noise

e The map does not give us a proof of the existence of periodic orbits for
the CNT model that correspond to the fixed points B, C and D.

e The map does not give complete information, however, as it is
constructed only in a neighborhood of the LD entrained solution.



Appendix



Example of phase reduction

1. Periodic orbit of FitzHugh-Nagumo %0.5,
model. 25l
2. The zero-phase point X, is chosen to _ '2_ ? 7 poténtial T %
correspond to the peak of the potential. =
o , , , _
3. The dynamics near the periodic orbit are il 20 40 e 8
well described by the phase model. Bz
Q.9

20 40 60 80
time

<

Scholarpedia.org



Application

e The linear approximation of P(O, o') is applied for computing isochrons of
some biological oscillators.

= P(0,0) = v(0) + e " ®(0)u + o(c?)

e Isochrons are the level sets of the function O(x) defined in the phase
reduction method.



Number of fixed points is bounded above by four.

sin(fy (s1) — 05 (51)) = ——2

aq
2 —
in(8o (1) — 01 (s3)) = 2 - w1)
Choose k and a,, such that the value of the right hand side is between 0 and 1.
Hence,

91(31) — 92(81) = ﬂi(sl),z’ = 1,2.
01(0) — 62(0) = B;(0).

since 03 (0) =
yo = 01(0) = 5;(0) + .

Similarly, we can show

Ly — 90(0) — CJ(O) + 01(0) — Cj(O) —|-ﬁz'(0) + .



Change in the number of fixed points for large values
of parameters.

dfy 0
Let T = a1t , we obtained the fast equations. dr

db,
0, becomes synchronized to ¥ = 01(0). dr 0

db,

—— =sin(6; — 0

d’T sm( 1 2)
Lete = 1/, the equations on original
time scale becomes dby

dat

On the original time scale, 6, = 0, do, . B
remains. Thus when 6. returns to the dt wi + kf(8o) sin(6o — 61)
Poincar\'e section again, Y =— 7 . 6@ ~ ey +sin(6y — ),

dt



The 1-D pre-entrained map

é% = M2 — kfh(P2) — kDP2
dM.
é# = &[(g(P2) — Ma) + (a1 My )g(Py)]

Poincare section is selected at
P:P, =1.72, |M2 — 0.1289| <o

In the pre-entrained case, oscillator 1 is a
periodic forcing into oscillator 2.

Entrained NT+4

NT>




The 1-D pre-entrained map

Wit = Tyre () = (W0 + (33 1)) mod 24

e y has the same definition

as before. — , , , 6
e The return time p(y) is 20t l— g <18 |

evaluated for oscillator 1 at —

a certain location whichis ~ _ | ! 4'{\

determined by y. Sl | =
o Y(y) = vy (Xo) is a point ,

on oscillator 1’s limit cycle 5 . 1\1 U

0 0

0 5 10y, 15 2 0 24 48 72 96 120 144 168 192
t



Construction of the 2-D entrainment map

fr: map X tots limit cycle
\

1.y  (Py(x), Mi(z),y)

[l ’ ’ S: apply Poincaré map
)

A
1 phase angle projectio
(@y) EF2ERTR (M y 4 plz,y)

The map is written as

II(xz,y) = fa 0o So fi(z,y)



Parameter
dependance.

The x & y nullclines
change systematically
as we vary the value of
(11.
The entrainment time
plot under different
value of coupling
strength (a,).
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