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Introduction

● Circadian rhythm: an internal rhythm that regulates 
many body processes including the sleep-wake cycle, 
digestion and hormone release. 

● Circadian rhythms exist across animal and plant 
species

● The ability of a circadian system to entrain its 
“central” and “peripheral” oscillators to the 24-hour 
light-dark cycle (LD)  is one of the most important 
properties.

Source: 
PhotonStar 
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Dynamics of a Hierarchical Circadian 
System

Leise and Siegelmann, 2006 JBR

The nature of entrainment (advance vs delay) depends on how lights are shifted



Phase-locking due to periodic 
forcing

● This type of problem has been extensively studied in a 
variety of contexts

● Keener et al 1981, Bressloff 1992, Coombes & Owen 
2003, Laing & Longtin 2003, Medvedev & Cisternas 
2004 …. many more

● Circadian literature: Kronauer’s group 1990s-, 
Ronnenberg’s group 2000s-, Goldbeter’s group 
2000s-, Herzel’s group 2000s-, Peskin and Forger 
2003, 2004…many more

● Phase-locking described either through Arnold Tongue 
structure or Devil’s Staircase (Denjoy’s Theorem for 
Circle Maps)



Central Goals

● Derive an analytic/computational map-based method to 
assess the entrainment process as well as the effect of 
relevant parameters.

● Determine how the entrainment properties of central 
and peripheral oscillators may differ in a hierarchical 
circadian network. 

● Identify important mathematical structures that help 
explain empirical observations. In fact, the map reveals 
the existence of saddle structures that organize the 
dynamics.



Main topics

● Part 1: Existing methods and some applications.

● Part 2: Entrainment map for coupled Kuramoto oscillators.

● Part 3: Entrainment map for coupled Novak-Tyson 

oscillators.



Phase reduction 
● A classical method (Winfree, 2001; Brown et al, 2004) that 

reduces a multi-dimensional limit cycle oscillator into a 
one-dimensional phase oscillator, which often relies on 
averaging.

● Many phenomena such as chemical reactions, electric 
circuits, mechanical vibrations, cardiac cells can be 
studied by this method.

Part 1



Parameterization

● Give a phase-amplitude coordinate system near the limit 
cycle.

● The parameterized space has simpler dynamics.
● It is often applied to find invariant manifolds (Castelli et al., 

2015; Cabre, et al., 2005).
● For limit cycle, it can be applied to find the isochrones and 

isostable curves (Guillamon, 2020).



Application on computing isochrones
Unforced Novak-Tyson oscillator

● Isochrones are 
the invariant set 
for different 
initial conditions 
to have same 
phase.



Circadian oscillators: Two “unforced” limit cycles

● Either in experiment or model, the oscillator can be subjected to 24 hours 
of constant darkness DD or constant light LL 

● In the presence of LD-periodic forcing, the trajectory will bounce back and 
forth between these two “unforced” limit cycles (Peterson, 1980).

● These oscillators will lie in different locations in phase space and 
presumably have different attractive structures (e.g. isochrons)

● We note that this attraction to either the LL or DD limit cycles is transient 
so the manifolds of either limit cycle are NOT invariant for the periodically 
forced flow.



Part 2

● Hierarchical system modeled as Kuramoto 
oscillators

● Analysis on the entrainment map

● Numerical results



Hierarchical system modeled as Kuramoto oscillators



Single oscillator case: 1-D entrainment map

● 𝒙 is defined to be the value of 𝜽0 , which is the 
phase of light-dark forcing.

● 𝛒 measures the return time when the 
oscillator first returns to the chosen Poincare 
section:               .



1-D entrainment map

● Easy to find the stable and 
unstable periodic orbits.

● Easy to calculate the entrainment 
time by iterating the map.

● Easy to see the direction of 
entrainment by cobwebbing (phase 
advance vs delay).

● Easy to show dependence on 
parameters.

● Discontinuity moves to the 
boundary as we increase 𝗄.



2-D entrainment map

Put a Poincare section at                  , and let 



Necessary conditions on entrainment.

Reduced to

For entrainment, we need



Number of fixed points (schematic explanation)

● Number of fixed points depend on the 
number of intersections of the line and 
the sin function.

● The number of fixed points have four 
possibility: 0,1,2,4.

● Detailed proof is in the dissertation.



Numerical results of the fixed points analysis.

● No entrainment:

● Different number of fixed points are 
separated by the green curves.



Nullclines of the map for different parameters values.

(a)
  

(b) Large k:
 

(c) Large 𝝰:

(d) Both large:

Red curve: x-nullcline
Blue curve: y-nullcline

(a) (b)

(c) (d)



Numerical results for case (a)
● Stability of fixed points: A stable; 

B & C saddle; D unstable.

● Entrainment time is computed 
by iterating the map on each 
initial conditions.

● Manifolds visualization by 
Lagrangian descriptors method.
(Lopesino et al., 2015).

● Discretized arclength plot and its 
gradient plot.



Conclusions from Kuramoto model
● Number of fixed point is bounded by four.

● Entrainment time revealed structure of stable and unstable manifolds of the 
map.

● Dynamics of the map are organized by the manifolds of the two saddle points.

● Generalization to the N+1 oscillator case is discussed in the dissertation.



● Coupled Novak-Tyson (CNT) oscillators.

● Entrainment map. (Liao, Diekman and Bose, 2020 
SIADS)

Part 3



Existing 1-D entrainment map
Novak-Tyson model:

● Non-autonomous.

● Piecewise smooth 
periodic forcing.



Existing 1-D entrainment map

● 𝐲 is defined to be the phase of light-dark 
forcing.

● 𝛒(𝐲) measures the return time when the 
oscillator first returns to the chosen Poincare 
section.

● Structure of the map is similar to the one from 
the Kuramoto model.

Diekman & Bose, 2016



The coupled Novak-Tyson model

● This is a hierarchical network with oscillators at 

different levels of hierarchy. 



Phase plane analysis

● The DD, LL and LD limit cycles 
of each oscillator.

● Poincare section is selected on 
the second oscillator.

● X = phase of O1
● Y = phase of LD

Poincare section

O1

O2



Construction of the 2-D entrainment map



Surfaces and nullclines of the map

Geometrically find the fixed points of the map: use corresponding diagonal plane 
to intersect the surface of 𝚷1 and 𝚷2.



Surfaces and nullclines of the map (use top view)

Geometrically find the fixed points of the map: use corresponding diagonal plane 
to intersect the surface of 𝚷1 and 𝚷2.



Stability and entrainment times
● The stability of the fixed points for the map 

reveal the properties of the original system 
under certain conditions.

● The entrainment time plot helps locating the 
stable manifolds.



Iterates and manifolds

● The phase portrait with 10 iterates of each point.
● The unstable and stable manifolds of the saddle points B and C are calculated by growing method 

and Search Circle (SC) method. (Krauskopf, B. & Osinga, H., 1997; England, J.P., Krauskopf, B. & 
Osinga, H.M., 2004.)



Different directions of entrainment



Dynamics of a Hierarchical Circadian 
System

Leise and Siegelmann, 2006 JBR

Our results suggest that the saddle structures exist for this model.



Conclusions
● The 2-dimensional entrainment map reveals the mathematical 

structures underlying the different types of entrainment behaviors.
○ The saddle points and their manifolds organize how iterates approach the 

stable LD-entrained solution.
○ Though not discussed, the entrainment time plots can be used to calculate 

jet lag recovery (see Diekman & Bose 2018, JTB)
● The map behaves in stereotypical ways across different circadian 

models making it easy to understand or predict parameter 
dependencies.

● Though not discussed here, the entrainment map should still “be 
applicable” in the presence of modest stochasticity and/or noise

● The map does not give us a proof of the existence of periodic orbits for 
the CNT model that correspond to the fixed points B, C and D.

● The map does not give complete information, however, as it is 
constructed only in a neighborhood of the LD entrained solution. 



Appendix



Example of phase reduction

Scholarpedia.org

1. Periodic orbit of FitzHugh-Nagumo 
model.

2. The zero-phase point x0 is chosen to 
correspond to the peak of the potential.

3. The dynamics near the periodic orbit are 
well described by the phase model.



Application
● The linear approximation of                 is applied for computing isochrons of 

some biological oscillators.

● Isochrons are the level sets of the function 𝜭(x) defined in the phase 
reduction method.



Number of fixed points is bounded above by four.

Choose 𝗄 and 𝝰1, such that the value of the right hand side is between 0 and 1. 
Hence,

Since 

Similarly, we can show



Change in the number of fixed points for large values 
of parameters.

Let                  , we obtained the fast equations.

𝛉2 becomes synchronized to                 . 

Let                , the equations on original 
time scale becomes

On the original time scale, 𝛉1 = 𝛉2 
remains. Thus when 𝛉1 returns to the 
Poincar\'e section again,               .



The 1-D pre-entrained map

In the pre-entrained case, oscillator 1 is a 
periodic forcing into oscillator 2.

Poincare section is selected at 



The 1-D pre-entrained map

● 𝐲 has the same definition 
as before.

● The return time 𝛒(𝐲) is 
evaluated for oscillator 1 at 
a certain location which is 
determined by 𝐲.

●                             is a point 
on oscillator 1’s limit cycle



Construction of the 2-D entrainment map

The map is written as



Parameter 
dependance.

● The x & y nullclines 
change systematically 
as we vary the value of 
𝛂1.

● The entrainment time 
plot under different 
value of coupling 
strength (𝛂1).


